LUCIDus: Latent Unknown Clustering with Integrated Data

An implementation for the 'LUCID' method to jointly estimate latent unknown clusters/subgroups with integrated data. An EM algorithm is used to obtain the latent cluster assignment and model parameter estimates. Feature selection is achieved by applying the regularization method.

Version: 1.0.0
Depends: R (≥ 3.1.0)
Imports: mvtnorm, nnet, glmnet, glasso, Matrix, lbfgs, stats, methods, boot, networkD3, foreach, doParallel
Suggests: testthat, knitr, rmarkdown
Published: 2019-12-02
Author: Cheng Peng, Zhao Yang, David V. Conti
Maintainer: Cheng Peng <chengpen at usc.edu>
License: GPL-2
URL: https://github.com/USCbiostats/LUCIDus
NeedsCompilation: no
Citation: LUCIDus citation info
Materials: README NEWS
CRAN checks: LUCIDus results

Downloads:

Reference manual: LUCIDus.pdf
Vignettes: LUCIDus
Package source: LUCIDus_1.0.0.tar.gz
Windows binaries: r-devel: LUCIDus_1.0.0.zip, r-devel-gcc8: LUCIDus_1.0.0.zip, r-release: LUCIDus_1.0.0.zip, r-oldrel: LUCIDus_1.0.0.zip
OS X binaries: r-release: LUCIDus_1.0.0.tgz, r-oldrel: LUCIDus_1.0.0.tgz
Old sources: LUCIDus archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=LUCIDus to link to this page.