EGAnet: Exploratory Graph Analysis - A Framework for Estimating the Number of Dimensions in Multivariate Data Using Network Psychometrics

Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA is part of a new area called network psychometrics that uses undirected network models for the assessment of psychometric properties. EGA estimates the number of dimensions (or factors) using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community detection algorithm. A bootstrap method for verifying the stability of the dimensions and items in those dimensions is available. The fit of the structure suggested by EGA can be verified using Entropy Fit Indices. A novel approach called Unique Variable Analysis (UVA) can be used to identify and reduce redundant variables in multivariate data. Network loadings, which are roughly equivalent to factor loadings when the data generating model is a factor model, are available. Network scores can also be computed using the network loadings. Dynamic EGA (dynEGA) will estimate dimensions from time series data for individual, group, and sample levels. Golino, H., & Epskamp, S. (2017) <doi:10.1371/journal.pone.0174035>. Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2020) <doi:10.1037/met0000255>. Christensen, A. P., & Golino, H. (under review) <doi:10.31234/>. Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020) <doi:10.31234/>. Christensen, A. P. & Golino, H. (2019) <doi:10.31234/>. Christensen, A. P., Garrido, L. E., & Golino, H. (under review) <doi:10.31234/>. Golino, H., Christensen, A. P., Moulder, R. G., Kim, S., & Boker, S. M. (under review) <doi:10.31234/>.

Version: 0.9.8
Depends: R (≥ 3.5.0)
Imports: qgraph (≥ 1.4.1), semPlot (≥ 1.0.1), igraph (≥ 1.0.1), lavaan (≥ 0.5-22), NetworkToolbox (≥ 1.4.0), glasso (≥ 1.10), stats, Matrix (≥ 1.2), dplyr (≥ 0.7.8), network (≥ 1.16.0), GGally (≥ 2.0.0), methods
Suggests: knitr, rmarkdown, markdown, kableExtra, psych, psychTools, ggpubr, ggplot2, tidyselect, corpcor (≥ 1.6.9), plyr (≥ 1.8.4), matrixcalc (≥ 1.0-3), pbapply, OpenMx, wTO, MASS, fitdistrplus, primes, purrr, shiny, shinyjs, shinyalert, shinyBS, R.matlab, foreign, readxl, gridExtra, rstudioapi, RColorBrewer, infutil
Published: 2021-02-16
Author: Hudson Golino ORCID iD [aut, cre], Alexander Christensen ORCID iD [aut], Robert Moulder ORCID iD [ctb], Luis E. Garrido ORCID iD [ctb]
Maintainer: Hudson Golino <hfg9s at>
License: GPL (≥ 3.0)
NeedsCompilation: no
Citation: EGAnet citation info
Materials: NEWS
In views: Psychometrics
CRAN checks: EGAnet results


Reference manual: EGAnet.pdf
Vignettes: Network Scores
Unique Variable Analysis
Package source: EGAnet_0.9.8.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: EGAnet_0.9.8.tgz, r-oldrel: EGAnet_0.9.6.tgz
Old sources: EGAnet archive

Reverse dependencies:

Reverse suggests: parameters


Please use the canonical form to link to this page.